// This is free and unencumbered software released into the public domain under The Unlicense (http://unlicense.org/) // main repo: https://github.com/wangyi-fudan/wyhash // author: 王一 Wang Yi // contributors: Reini Urban, Dietrich Epp, Joshua Haberman, Tommy Ettinger, // Daniel Lemire, Otmar Ertl, cocowalla, leo-yuriev, // Diego Barrios Romero, paulie-g, dumblob, Yann Collet, ivte-ms, // hyb, James Z.M. Gao, easyaspi314 (Devin), TheOneric /* quick example: string s="fjsakfdsjkf"; uint64_t hash=wyhash(s.c_str(), s.size(), 0, wyp_); */ #include "../private_api.h" #ifndef WYHASH_CONDOM //protections that produce different results: //1: normal valid behavior //2: extra protection against entropy loss (probability=2^-63), aka. "blind multiplication" #define WYHASH_CONDOM 1 #endif #ifndef WYHASH_32BIT_MUM //0: normal version, slow on 32 bit systems //1: faster on 32 bit systems but produces different results, incompatible with wy2u0k function #define WYHASH_32BIT_MUM 0 #endif //includes #if defined(_MSC_VER) && defined(_M_X64) #include #pragma intrinsic(_umul128) #endif //likely and unlikely macros #if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) #define likely_(x) __builtin_expect(x,1) #define unlikely_(x) __builtin_expect(x,0) #else #define likely_(x) (x) #define unlikely_(x) (x) #endif //128bit multiply function static inline void wymum_(uint64_t *A, uint64_t *B){ #if(WYHASH_32BIT_MUM) uint64_t hh=(*A>>32)*(*B>>32), hl=(*A>>32)*(uint32_t)*B, lh=(uint32_t)*A*(*B>>32), ll=(uint64_t)(uint32_t)*A*(uint32_t)*B; #if(WYHASH_CONDOM>1) *A^=_wyrot(hl)^hh; *B^=_wyrot(lh)^ll; #else *A=_wyrot(hl)^hh; *B=_wyrot(lh)^ll; #endif #elif defined(__SIZEOF_INT128__) __uint128_t r=*A; r*=*B; #if(WYHASH_CONDOM>1) *A^=(uint64_t)r; *B^=(uint64_t)(r>>64); #else *A=(uint64_t)r; *B=(uint64_t)(r>>64); #endif #elif defined(_MSC_VER) && defined(_M_X64) #if(WYHASH_CONDOM>1) uint64_t a, b; a=_umul128(*A,*B,&b); *A^=a; *B^=b; #else *A=_umul128(*A,*B,B); #endif #else uint64_t ha=*A>>32, hb=*B>>32, la=(uint32_t)*A, lb=(uint32_t)*B, hi, lo; uint64_t rh=ha*hb, rm0=ha*lb, rm1=hb*la, rl=la*lb, t=rl+(rm0<<32), c=t>32)+(rm1>>32)+c; #if(WYHASH_CONDOM>1) *A^=lo; *B^=hi; #else *A=lo; *B=hi; #endif #endif } //multiply and xor mix function, aka MUM static inline uint64_t wymix_(uint64_t A, uint64_t B){ wymum_(&A,&B); return A^B; } //endian macros #ifndef WYHASH_LITTLE_ENDIAN #if defined(_WIN32) || defined(__LITTLE_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) #define WYHASH_LITTLE_ENDIAN 1 #elif defined(__BIG_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #define WYHASH_LITTLE_ENDIAN 0 #else #warning could not determine endianness! Falling back to little endian. #define WYHASH_LITTLE_ENDIAN 1 #endif #endif //read functions #if (WYHASH_LITTLE_ENDIAN) static inline uint64_t wyr8_(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return v;} static inline uint64_t wyr4_(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return v;} #elif defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) static inline uint64_t wyr8_(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return __builtin_bswap64(v);} static inline uint64_t wyr4_(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return __builtin_bswap32(v);} #elif defined(_MSC_VER) static inline uint64_t wyr8_(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return _byteswap_uint64(v);} static inline uint64_t wyr4_(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return _byteswap_ulong(v);} #else static inline uint64_t wyr8_(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return (((v >> 56) & 0xff)| ((v >> 40) & 0xff00)| ((v >> 24) & 0xff0000)| ((v >> 8) & 0xff000000)| ((v << 8) & 0xff00000000)| ((v << 24) & 0xff0000000000)| ((v << 40) & 0xff000000000000)| ((v << 56) & 0xff00000000000000)); } static inline uint64_t wyr4_(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return (((v >> 24) & 0xff)| ((v >> 8) & 0xff00)| ((v << 8) & 0xff0000)| ((v << 24) & 0xff000000)); } #endif static inline uint64_t wyr3_(const uint8_t *p, size_t k) { return (((uint64_t)p[0])<<16)|(((uint64_t)p[k>>1])<<8)|p[k-1];} //wyhash main function static inline uint64_t wyhash(const void *key, size_t len, uint64_t seed, const uint64_t *secret){ const uint8_t *p=(const uint8_t *)key; seed^=wymix_(seed^secret[0],secret[1]); uint64_t a, b; if(likely_(len<=16)){ if(likely_(len>=4)){ a=(wyr4_(p)<<32)|wyr4_(p+((len>>3)<<2)); b=(wyr4_(p+len-4)<<32)|wyr4_(p+len-4-((len>>3)<<2)); } else if(likely_(len>0)){ a=wyr3_(p,len); b=0;} else a=b=0; } else{ size_t i=len; if(unlikely_(i>48)){ uint64_t see1=seed, see2=seed; do{ seed=wymix_(wyr8_(p)^secret[1],wyr8_(p+8)^seed); see1=wymix_(wyr8_(p+16)^secret[2],wyr8_(p+24)^see1); see2=wymix_(wyr8_(p+32)^secret[3],wyr8_(p+40)^see2); p+=48; i-=48; }while(likely_(i>48)); seed^=see1^see2; } while(unlikely_(i>16)){ seed=wymix_(wyr8_(p)^secret[1],wyr8_(p+8)^seed); i-=16; p+=16; } a=wyr8_(p+i-16); b=wyr8_(p+i-8); } a^=secret[1]; b^=seed; wymum_(&a,&b); return wymix_(a^secret[0]^len,b^secret[1]); } //the default secret parameters static const uint64_t wyp_[4] = {0xa0761d6478bd642full, 0xe7037ed1a0b428dbull, 0x8ebc6af09c88c6e3ull, 0x589965cc75374cc3ull}; uint64_t flecs_hash( const void *data, ecs_size_t length) { return wyhash(data, flecs_ito(size_t, length), 0, wyp_); }