#include #include typedef struct { double x, y; } Position, Velocity; void Move(ecs_iter_t *it) { Position *p = ecs_field(it, Position, 0); const Velocity *v = ecs_field(it, const Velocity, 1); for (int i = 0; i < it->count; i ++) { p[i].x += v[i].x; p[i].y += v[i].y; } } void DeleteEntity(ecs_iter_t *it) { const Position *p = ecs_field(it, Position, 0); for (int i = 0; i < it->count; i ++) { if (p[i].x >= 3) { ecs_entity_t e = it->entities[i]; printf("Delete entity %s\n", ecs_get_name(it->world, e)); ecs_delete(it->world, e); } } } void PrintPosition(ecs_iter_t *it) { const Position *p = ecs_field(it, const Position, 0); for (int i = 0; i < it->count; i ++) { printf("%s: {%f, %f}\n", ecs_get_name(it->world, it->entities[i]), p[i].x, p[i].y); } } int main(int argc, char *argv[]) { ecs_world_t *ecs = ecs_init_w_args(argc, argv); // This example shows how to annotate systems that delete entities, in a way // that allows the scheduler to correctly insert sync points. See the // sync_point example for more details on sync points. // // While annotating a system for a delete operation follows the same // design as other operations, one key difference is that a system often // does not know which components a to be deleted entity has. This makes it // impossible to annotate the system in advance for specific components. // // To ensure the scheduler is still able to insert the correct sync points, // a system can use a wildcard to indicate that any component could be // modified by the system, which forces the scheduler to insert a sync. ECS_COMPONENT(ecs, Position); ECS_COMPONENT(ecs, Velocity); // Basic move system. ECS_SYSTEM(ecs, Move, EcsOnUpdate, Position, [in] Velocity); // Delete entities when p.x >= 3. Add wildcard annotation to indicate any // component could be written by the system. Position itself is added as // const, since inside the system we're only reading it. // // Note how the system uses the same annotations as the sync_point example. ECS_SYSTEM(ecs, DeleteEntity, EcsOnUpdate, [in] Position, [out] *()); // Print resulting Position ECS_SYSTEM(ecs, PrintPosition, EcsPostUpdate, [in] Position); // Create a few test entities for a Position, Velocity query ecs_entity_t e1 = ecs_entity(ecs, { .name = "e1" }); ecs_set(ecs, e1, Position, {0, 0}); ecs_set(ecs, e1, Velocity, {1, 2}); ecs_entity_t e2 = ecs_entity(ecs, { .name = "e2" }); ecs_set(ecs, e2, Position, {1, 2}); ecs_set(ecs, e2, Velocity, {1, 2}); // Run systems. Debug logging enables us to see the generated schedule ecs_log_set_level(1); while (ecs_progress(ecs, 0.0f)) { if (!ecs_count(ecs, Position)) { break; // No more entities left with Position } } ecs_log_set_level(-1); // Restore so we don't get world cleanup logs // Output: // info: pipeline rebuild: // info: | schedule: threading: 0, staging: 1: // info: | | system Move // info: | | system DeleteEntity // info: | | merge // info: | schedule: threading: 0, staging: 1: // info: | | system PrintPosition // info: | | merge // e1: {1, 2} // e2: {2, 4} // Delete entity e2 // e1: {2, 4} // Delete entity e1 // info: system Move deactivated // info: system DeleteEntity deactivated // info: system PrintPosition deactivated // // Removing the wildcard annotation from the DeleteEntity system will // remove the first sync point. // // Note how after both entities are deleted, all three systems are // deactivated. This happens when there are no matching entities for a // system. A deactivated system is not ran by the scheduler, which reduces // overhead. // // To create the same system with ecs_system_init, do: // ecs_system_init(ecs, &(ecs_system_desc_t){ // .query.terms = { // { // .id = ecs_id(Position), // .inout = EcsIn // }, // { // .id = EcsWildcard, // .inout = EcsOut, // .src.id = EcsIsEntity // } // }, // .entity = { // .name = "DeleteEntity", // .add = ecs_ids(ecs_dependson(EcsOnUpdate)) // }, // .callback = DeleteEntity // }); return ecs_fini(ecs); }