/* Simple DirectMedia Layer Copyright (C) 1997-2022 Sam Lantinga This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #if defined(__clang_analyzer__) && !defined(SDL_DISABLE_ANALYZE_MACROS) #define SDL_DISABLE_ANALYZE_MACROS 1 #endif #include "../SDL_internal.h" /* This file contains portable stdlib functions for SDL */ #include "SDL_stdinc.h" #include "../libm/math_libm.h" double SDL_atan(double x) { #if defined(HAVE_ATAN) return atan(x); #else return SDL_uclibc_atan(x); #endif } float SDL_atanf(float x) { #if defined(HAVE_ATANF) return atanf(x); #else return (float)SDL_atan((double)x); #endif } double SDL_atan2(double y, double x) { #if defined(HAVE_ATAN2) return atan2(y, x); #else return SDL_uclibc_atan2(y, x); #endif } float SDL_atan2f(float y, float x) { #if defined(HAVE_ATAN2F) return atan2f(y, x); #else return (float)SDL_atan2((double)y, (double)x); #endif } double SDL_acos(double val) { #if defined(HAVE_ACOS) return acos(val); #else double result; if (val == -1.0) { result = M_PI; } else { result = SDL_atan(SDL_sqrt(1.0 - val * val) / val); if (result < 0.0) { result += M_PI; } } return result; #endif } float SDL_acosf(float val) { #if defined(HAVE_ACOSF) return acosf(val); #else return (float)SDL_acos((double)val); #endif } double SDL_asin(double val) { #if defined(HAVE_ASIN) return asin(val); #else double result; if (val == -1.0) { result = -(M_PI / 2.0); } else { result = (M_PI / 2.0) - SDL_acos(val); } return result; #endif } float SDL_asinf(float val) { #if defined(HAVE_ASINF) return asinf(val); #else return (float)SDL_asin((double)val); #endif } double SDL_ceil(double x) { #if defined(HAVE_CEIL) return ceil(x); #else double integer = SDL_floor(x); double fraction = x - integer; if (fraction > 0.0) { integer += 1.0; } return integer; #endif /* HAVE_CEIL */ } float SDL_ceilf(float x) { #if defined(HAVE_CEILF) return ceilf(x); #else return (float)SDL_ceil((double)x); #endif } double SDL_copysign(double x, double y) { #if defined(HAVE_COPYSIGN) return copysign(x, y); #elif defined(HAVE__COPYSIGN) return _copysign(x, y); #elif defined(__WATCOMC__) && defined(__386__) /* this is nasty as hell, but it works.. */ unsigned int *xi = (unsigned int *) &x, *yi = (unsigned int *) &y; xi[1] = (yi[1] & 0x80000000) | (xi[1] & 0x7fffffff); return x; #else return SDL_uclibc_copysign(x, y); #endif /* HAVE_COPYSIGN */ } float SDL_copysignf(float x, float y) { #if defined(HAVE_COPYSIGNF) return copysignf(x, y); #else return (float)SDL_copysign((double)x, (double)y); #endif } double SDL_cos(double x) { #if defined(HAVE_COS) return cos(x); #else return SDL_uclibc_cos(x); #endif } float SDL_cosf(float x) { #if defined(HAVE_COSF) return cosf(x); #else return (float)SDL_cos((double)x); #endif } double SDL_exp(double x) { #if defined(HAVE_EXP) return exp(x); #else return SDL_uclibc_exp(x); #endif } float SDL_expf(float x) { #if defined(HAVE_EXPF) return expf(x); #else return (float)SDL_exp((double)x); #endif } double SDL_fabs(double x) { #if defined(HAVE_FABS) return fabs(x); #else return SDL_uclibc_fabs(x); #endif } float SDL_fabsf(float x) { #if defined(HAVE_FABSF) return fabsf(x); #else return (float)SDL_fabs((double)x); #endif } double SDL_floor(double x) { #if defined(HAVE_FLOOR) return floor(x); #else return SDL_uclibc_floor(x); #endif } float SDL_floorf(float x) { #if defined(HAVE_FLOORF) return floorf(x); #else return (float)SDL_floor((double)x); #endif } double SDL_trunc(double x) { #if defined(HAVE_TRUNC) return trunc(x); #else if (x >= 0.0f) { return SDL_floor(x); } else { return SDL_ceil(x); } #endif } float SDL_truncf(float x) { #if defined(HAVE_TRUNCF) return truncf(x); #else return (float)SDL_trunc((double)x); #endif } double SDL_fmod(double x, double y) { #if defined(HAVE_FMOD) return fmod(x, y); #else return SDL_uclibc_fmod(x, y); #endif } float SDL_fmodf(float x, float y) { #if defined(HAVE_FMODF) return fmodf(x, y); #else return (float)SDL_fmod((double)x, (double)y); #endif } double SDL_log(double x) { #if defined(HAVE_LOG) return log(x); #else return SDL_uclibc_log(x); #endif } float SDL_logf(float x) { #if defined(HAVE_LOGF) return logf(x); #else return (float)SDL_log((double)x); #endif } double SDL_log10(double x) { #if defined(HAVE_LOG10) return log10(x); #else return SDL_uclibc_log10(x); #endif } float SDL_log10f(float x) { #if defined(HAVE_LOG10F) return log10f(x); #else return (float)SDL_log10((double)x); #endif } double SDL_pow(double x, double y) { #if defined(HAVE_POW) return pow(x, y); #else return SDL_uclibc_pow(x, y); #endif } float SDL_powf(float x, float y) { #if defined(HAVE_POWF) return powf(x, y); #else return (float)SDL_pow((double)x, (double)y); #endif } double SDL_round(double arg) { #if defined HAVE_ROUND return round(arg); #else if (arg >= 0.0) { return SDL_floor(arg + 0.5); } else { return SDL_ceil(arg - 0.5); } #endif } float SDL_roundf(float arg) { #if defined HAVE_ROUNDF return roundf(arg); #else return (float)SDL_round((double)arg); #endif } long SDL_lround(double arg) { #if defined HAVE_LROUND return lround(arg); #else return (long)SDL_round(arg); #endif } long SDL_lroundf(float arg) { #if defined HAVE_LROUNDF return lroundf(arg); #else return (long)SDL_round((double)arg); #endif } double SDL_scalbn(double x, int n) { #if defined(HAVE_SCALBN) return scalbn(x, n); #elif defined(HAVE__SCALB) return _scalb(x, n); #elif defined(HAVE_LIBC) && defined(HAVE_FLOAT_H) && (FLT_RADIX == 2) /* from scalbn(3): If FLT_RADIX equals 2 (which is * usual), then scalbn() is equivalent to ldexp(3). */ return ldexp(x, n); #else return SDL_uclibc_scalbn(x, n); #endif } float SDL_scalbnf(float x, int n) { #if defined(HAVE_SCALBNF) return scalbnf(x, n); #else return (float)SDL_scalbn((double)x, n); #endif } double SDL_sin(double x) { #if defined(HAVE_SIN) return sin(x); #else return SDL_uclibc_sin(x); #endif } float SDL_sinf(float x) { #if defined(HAVE_SINF) return sinf(x); #else return (float)SDL_sin((double)x); #endif } double SDL_sqrt(double x) { #if defined(HAVE_SQRT) return sqrt(x); #else return SDL_uclibc_sqrt(x); #endif } float SDL_sqrtf(float x) { #if defined(HAVE_SQRTF) return sqrtf(x); #else return (float)SDL_sqrt((double)x); #endif } double SDL_tan(double x) { #if defined(HAVE_TAN) return tan(x); #else return SDL_uclibc_tan(x); #endif } float SDL_tanf(float x) { #if defined(HAVE_TANF) return tanf(x); #else return (float)SDL_tan((double)x); #endif } int SDL_abs(int x) { #if defined(HAVE_ABS) return abs(x); #else return (x < 0) ? -x : x; #endif } #if defined(HAVE_CTYPE_H) int SDL_isalpha(int x) { return isalpha(x); } int SDL_isalnum(int x) { return isalnum(x); } int SDL_isdigit(int x) { return isdigit(x); } int SDL_isxdigit(int x) { return isxdigit(x); } int SDL_ispunct(int x) { return ispunct(x); } int SDL_isspace(int x) { return isspace(x); } int SDL_isupper(int x) { return isupper(x); } int SDL_islower(int x) { return islower(x); } int SDL_isprint(int x) { return isprint(x); } int SDL_isgraph(int x) { return isgraph(x); } int SDL_iscntrl(int x) { return iscntrl(x); } int SDL_toupper(int x) { return toupper(x); } int SDL_tolower(int x) { return tolower(x); } #else int SDL_isalpha(int x) { return (SDL_isupper(x)) || (SDL_islower(x)); } int SDL_isalnum(int x) { return (SDL_isalpha(x)) || (SDL_isdigit(x)); } int SDL_isdigit(int x) { return ((x) >= '0') && ((x) <= '9'); } int SDL_isxdigit(int x) { return (((x) >= 'A') && ((x) <= 'F')) || (((x) >= 'a') && ((x) <= 'f')) || (SDL_isdigit(x)); } int SDL_ispunct(int x) { return (SDL_isgraph(x)) && (!SDL_isalnum(x)); } int SDL_isspace(int x) { return ((x) == ' ') || ((x) == '\t') || ((x) == '\r') || ((x) == '\n') || ((x) == '\f') || ((x) == '\v'); } int SDL_isupper(int x) { return ((x) >= 'A') && ((x) <= 'Z'); } int SDL_islower(int x) { return ((x) >= 'a') && ((x) <= 'z'); } int SDL_isprint(int x) { return ((x) >= ' ') && ((x) < '\x7f'); } int SDL_isgraph(int x) { return (SDL_isprint(x)) && ((x) != ' '); } int SDL_iscntrl(int x) { return (((x) >= '\0') && ((x) <= '\x1f')) || ((x) == '\x7f'); } int SDL_toupper(int x) { return ((x) >= 'a') && ((x) <= 'z') ? ('A'+((x)-'a')) : (x); } int SDL_tolower(int x) { return ((x) >= 'A') && ((x) <= 'Z') ? ('a'+((x)-'A')) : (x); } #endif /* This file contains a portable memcpy manipulation function for SDL */ void * SDL_memcpy(SDL_OUT_BYTECAP(len) void *dst, SDL_IN_BYTECAP(len) const void *src, size_t len) { #ifdef __GNUC__ /* Presumably this is well tuned for speed. On my machine this is twice as fast as the C code below. */ return __builtin_memcpy(dst, src, len); #elif defined(HAVE_MEMCPY) return memcpy(dst, src, len); #elif defined(HAVE_BCOPY) bcopy(src, dst, len); return dst; #else /* GCC 4.9.0 with -O3 will generate movaps instructions with the loop using Uint32* pointers, so we need to make sure the pointers are aligned before we loop using them. */ if (((uintptr_t)src & 0x3) || ((uintptr_t)dst & 0x3)) { /* Do an unaligned byte copy */ Uint8 *srcp1 = (Uint8 *)src; Uint8 *dstp1 = (Uint8 *)dst; while (len--) { *dstp1++ = *srcp1++; } } else { size_t left = (len % 4); Uint32 *srcp4, *dstp4; Uint8 *srcp1, *dstp1; srcp4 = (Uint32 *) src; dstp4 = (Uint32 *) dst; len /= 4; while (len--) { *dstp4++ = *srcp4++; } srcp1 = (Uint8 *) srcp4; dstp1 = (Uint8 *) dstp4; switch (left) { case 3: *dstp1++ = *srcp1++; case 2: *dstp1++ = *srcp1++; case 1: *dstp1++ = *srcp1++; } } return dst; #endif /* __GNUC__ */ } void * SDL_memset(SDL_OUT_BYTECAP(len) void *dst, int c, size_t len) { #if defined(HAVE_MEMSET) return memset(dst, c, len); #else size_t left; Uint32 *dstp4; Uint8 *dstp1 = (Uint8 *) dst; Uint8 value1; Uint32 value4; /* The value used in memset() is a byte, passed as an int */ c &= 0xff; /* The destination pointer needs to be aligned on a 4-byte boundary to * execute a 32-bit set. Set first bytes manually if needed until it is * aligned. */ value1 = (Uint8)c; while ((uintptr_t)dstp1 & 0x3) { if (len--) { *dstp1++ = value1; } else { return dst; } } value4 = ((Uint32)c | ((Uint32)c << 8) | ((Uint32)c << 16) | ((Uint32)c << 24)); dstp4 = (Uint32 *) dstp1; left = (len % 4); len /= 4; while (len--) { *dstp4++ = value4; } dstp1 = (Uint8 *) dstp4; switch (left) { case 3: *dstp1++ = value1; case 2: *dstp1++ = value1; case 1: *dstp1++ = value1; } return dst; #endif /* HAVE_MEMSET */ } #if defined(HAVE_CTYPE_H) && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L int SDL_isblank(int x) { return isblank(x); } #else int SDL_isblank(int x) { return ((x) == ' ') || ((x) == '\t'); } #endif /* vi: set ts=4 sw=4 expandtab: */